A Multifaceted Deep Generative Adversarial Networks Model for Mobile Malware Detection
نویسندگان
چکیده
Malware’s structural transformation to withstand the detection frameworks encourages hackers steal public’s confidential content. Researchers are developing a protective shield against intrusion of malicious malware in mobile devices. The deep learning-based android have ensured public safety; however, their dependency on diverse training samples has constrained utilization. handcrafted mechanisms achieved remarkable performance, but computational overheads major hurdle In this work, Multifaceted Deep Generative Adversarial Networks Model (MDGAN) been developed detect hybrid GoogleNet and LSTM features grayscale API sequence processed pixel-by-pixel pattern through conditional GAN for robust representation APK files. generator produces syntactic differentiation discriminator network. Experimental validation combined AndroZoo Drebin database shown 96.2% classification accuracy 94.7% F-score, which remain superior recently reported frameworks.
منابع مشابه
High-Resolution Deep Convolutional Generative Adversarial Networks
Generative Adversarial Networks (GANs) [7] convergence in a high-resolution setting with a computational constrain of GPU memory capacity (from 12GB to 24 GB) has been beset with difficulty due to the known lack of convergence rate stability. In order to boost network convergence of DCGAN (Deep Convolutional Generative Adversarial Networks) [14] and achieve good-looking high-resolution results ...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملAdversarial Deep Learning for Robust Detection of Binary Encoded Malware
Malware is constantly adapting in order to avoid detection. Model based malware detectors, such as SVM and neural networks, are vulnerable to so-called adversarial examples which are modest changes to detectable malware that allows the resulting malware to evade detection. Continuous-valued methods that are robust to adversarial examples of images have been developed using saddle-point optimiza...
متن کاملAdversarial Perturbations Against Deep Neural Networks for Malware Classification
Deep neural networks, like many other machine learning models, have recently been shown to lack robustness against adversarially crafted inputs. These inputs are derived from regular inputs by minor yet carefully selected perturbations that deceive machine learning models into desired misclassifications. Existing work in this emerging field was largely specific to the domain of image classifica...
متن کاملDeep Generative Adversarial Networks for Compressed Sensing (GANCS) Automates MRI
Magnetic resonance imaging (MRI) suffers from aliasing artifacts when it is highly undersampled for real-time imaging. Conventional compressed sensing (CS) MRI analytics are not however cognizant of the image diagnostic quality, and substantially trade-off accuracy for speed in real-time imaging. To cope with these challenges we put forth a novel CS framework that permeates benefits from genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2022
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app12199403